Check for
updates

R DIGITAL Assaciaionfoe
acvyel® 155 Ry T @m open)
£ Latest updates: https://dl.acm.org/doi/10.1145/3746252.3760882

SHORT-PAPER
Adversarially Attacking Graph Properties and Sparsification in Graph
Learning

CHUNJIANG ZHU, Old Dominion University, Norfolk, VA, United States
BLAKE B GAINES, University of Connecticut, Storrs, CT, United States

JINGFENG DENG, The University of North Carolina at Greensboro, Greensboro, NC, United
States

JINBO BI, University of Connecticut, Storrs, CT, United States

Open Access Support provided by:
Old Dominion University
The University of North Carolina at Greensboro

University of Connecticut

I PDF Download
j;b 3746252.3760882.pdf
< 27 January 2026

Total Citations: 0
Total Downloads: 68

Published: 10 November 2025
Citation in BibTeX format

CIKM '25: The 34th ACM International
Conference on Information and
Knowledge Management

November 10 - 14, 2025

Seoul, Republic of Korea

Conference Sponsors:
SIGWEB
SIGIR

CIKM '25: Proceedings of the 34th ACM International Conference on Information and Knowledge Management (November 2025)

https://doi.org/10.1145/3746252.3760882
ISBN: 9798400720406

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3746252.3760882
https://dl.acm.org/doi/10.1145/3746252.3760882
https://dl.acm.org/doi/10.1145/contrib-99660914471
https://dl.acm.org/doi/10.1145/institution-60007652
https://dl.acm.org/doi/10.1145/contrib-99661665931
https://dl.acm.org/doi/10.1145/institution-60022659
https://dl.acm.org/doi/10.1145/contrib-81318488254
https://dl.acm.org/doi/10.1145/institution-60018474
https://dl.acm.org/doi/10.1145/institution-60018474
https://dl.acm.org/doi/10.1145/contrib-81100131666
https://dl.acm.org/doi/10.1145/institution-60022659
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60007652
https://dl.acm.org/doi/10.1145/institution-60018474
https://dl.acm.org/doi/10.1145/institution-60022659
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3746252.3760882&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/cikm
https://dl.acm.org/conference/cikm
https://dl.acm.org/conference/cikm
https://dl.acm.org/sig/sigweb
https://dl.acm.org/sig/sigir
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746252.3760882&domain=pdf&date_stamp=2025-11-10

Adversarially Attacking Graph Properties and Sparsification in
Graph Learning

Blake Gaines
University of Connecticut
Storrs, CT, USA

Chunjiang Zhu"
Old Dominion University
Norfolk, VA, USA

Abstract

Graph neural networks and graph transformers explicitly or im-
plicitly rely on fundamental properties of the underlying graph,
such as spectral properties and shortest-path distances. However,
it is still not clear how these graph properties are vulnerable to
adversarial attacks and what impacts this has on the downstream
graph learning. Moreover, while graph sparsification has been used
to improve computational cost of learning over graphs, its suscep-
tibility to adversarial attacks has not been studied. In this paper,
we study adversarial attacks on graph properties and graph sparsi-
fication and their impacts on downstream graph learning, paving
the way for how to protect against these potential attacks. Our
proposed methods are effective in attacking spectral properties,
shortest distances, and graph sparsification as demonstrated in our
experimental evaluation.

CCS Concepts

« Theory of computation — Graph algorithms analysis; «
Security and privacy — Software and application security.

Keywords

Graph Machine Learning, Spectral Graph Properties, Shortest Dis-
tances, Shortest Path Interdiction

ACM Reference Format:

Chunjiang Zhu, Blake Gaines, Jing Deng, and Jinbo Bi. 2025. Adversarially
Attacking Graph Properties and Sparsification in Graph Learning. In Proceed-
ings of the 34th ACM International Conference on Information and Knowledge
Management (CIKM ’25), November 10-14, 2025, Seoul, Republic of Korea.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3746252.3760882

1 Introduction

Graph machine learning, such as graph neural networks (GNNs)
[11, 16, 26] and graph transformers [21, 36], has received signifi-
cant attention, thanks to its robust performance in various graph
prediction tasks and abundant instances of graph-structured data
in real-life and scientific fields. These advanced graph models ex-
plicitly or implicitly rely on inherent properties of the underlying
graph, such as spectral properties and shortest-path distances. In
network and graph data, however, false data can be easily injected
by adversaries: spammers can create fake followers on online social

“Corresponding author, Email: czhu@odu.edu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.

CIKM °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3760882

5530

Jinbo Bi
University of Connecticut
Storrs, CT, USA

Jing Deng
UNC Greensboro
Greensboro, NC, USA

networks, false “knowledge” triplets that are hard to verify can
be added to a knowledge graph, etc. It is crucial to obtain a good
understanding of the impact of these adversarial attacks on the
graph properties and downstream graph learning, before develop-
ing effective defense strategies.

In addition, it is still open to address the tradeoff between the
expressive power and the computational cost. Recently, graph spar-
sification [28], which can approximate a graph by a small subgraph,
has been used to improve the computational overhead of graph
learning [6, 12, 25, 38]. Graph learning models run faster in small
graphs while generating comparable performance [25, 33] if the
small graphs are a good approximation of the original graphs. How-
ever, it is still under-explored whether this newly added graph
sparsification module is secure and reliable and whether it is a
vulnerable point for adversarial attacks. For example, if the learned
graph representation is used for downstream graph clustering, a
dirty spectrally sparsified graph may not contain the key infor-
mation of the original graph for spectral clustering. Considering
routing algorithms for traffic management in wireless networks
and machine learning based network resource allocation and opti-
misation in wireless networks, if a GNN model needs to work on a
sparsified network, and an adversary attacks sparsification process,
it can alter the GNN prediction.

Our contributions in this exploration are summarized as follows:

e We study adversarial attacks on spectral properties in a graph
and spectral sparsification and their impacts on downstream
graph learning.

e We investigate adversarial attacks on graph shortest-path
distances and graph spanners through linear programming.
The proposed method can simultaneously elongate the short-
est paths between multiple pairs of vertices using optimal
perturbations while maintaining a small runtime.

e We have conducted extensive experiments to demonstrate
the effectiveness of our proposed methods in attacking graph
properties and sparsification: a small budget of perturbing
less than 5% of graph edges can significantly deteriorate
the quality of graph clustering results; the shortest path
interdiction method enlarges distances for multiple pairs
of vertices using optimal perturbations, often much smaller
than baselines, under comparable runtime.

Related Work. Adversarial attacks on machine learning have at-
tracted increasing research interest [2, 13, 29]. Small, often unno-
ticeable, perturbations on the samples designed by the attackers can
completely alter the output of the machine learning models. Like the
studies on grid data or other data, carefully crafted small perturba-
tions to graph structure and/or node features can also produce mod-
els with wrong prediction results [3, 7, 9, 10, 19, 20, 31, 32, 39, 40].
While these methods often directly target attacking a specific task,

https://doi.org/10.1145/3746252.3760882
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3746252.3760882

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

it is unclear how to attack fundamental properties of the underlying
graph, such as spectral properties and shortest distances, and what
impacts this has on downstream machine learning tasks.

Our problem of attacking shortest paths is also known as the
shortest path interdiction [15, 22]. Miller et al. [22] increase edge
weights such that a pre-chosen path connecting two vertices be-
comes their shortest path in the perturbed graph. This method can
be used to solve a simplified version of our problem when only a
single vertex pair is considered. However, their method requires
calculating the second shortest path using Yen'’s algorithm [35],
and thus incurs cubic computational cost. In contrast, our proposed
model works for multiple vertex pairs and even all pairs, using only
the shortest path algorithm.

2 Attacking Spectral Properties and Sparsifiers

Spectral Properties. Spectral graph theory studies inherently
combinatorial graphs from an algebraic perspective and spectral
properties have been exploited explicitly or implicitly in graph
machine learning, e.g., spectral clustering [23], Laplacian smoothing
[25], and semi-supervised learning [5]. Define the graph Laplacian
of a graph G as L = D — A where A is the adjacency matrix of G and
D is a diagonal matrix with the i* diagonal entry equal to the sum
over the i-th row of A. The eigenvalues A and eigenvectors u of the
Laplacian matrix are called Laplacian eigenvalues and eigenvectors.
Our goal is to study the impacts of adversarial attacks on spectral
graph properties and subsequent graph learning tasks based on
these properties.

We consider undirected unweighted graphs and use edge flipping
as the attacking method, specifically, adding new edges by flipping
0 to 1 in the adjacency matrix A and deleting existing edges by
flipping 1 to 0 to get the graph A’ after the attack. To measure the
changes in the Laplacian eigenvalues and eigenvectors, we adopt the
mean square error (MSE) between the eigenvalues and normalized
mutual information (NMI) of the eigenvectors, respectively. Then
the attacking problem under a budget of flipping at most F edges
can be re-formulated as:

max O(A,A") = f(LA)+a-g(uu’)
A/ eRan

ey

max
A’ cRnxn

1 n

- Z (A = 20)% + & - NMI(u;,),
i=1

s.t||JA—A'||o < 2F, (AT = A",

where a controls the relative weight. Because of the undirected na-
ture of graphs, A’ is symmetric and the zero-norm of the difference
between A and A’ is not larger than 2F.

The search space in Eq. (1) is over all possible n-vertex attacked
graphs. However, we can generate a set of candidates for edge flips,
C = C4 U Cy, which includes candidates to add C,; and candidates
to delete C;. For adding edges, we randomly sample |C,| candidate
vertex pairs with no edge. For Cy, we include all existing edges in
the clean graph while avoiding generating any singleton vertices.

To avoid computing the eigenvalues from scratch and reduce
complexity, we employ the fast approximation method of Laplacian
eigenvalues in [3] as shown in Theorem 2.1. The approximation
of eigenvectors is more complicated and time-consuming and thus

5531

Chunjiang Zhu, Blake Gaines, Jing Deng, and Jinbo Bi

will be addressed in future study. Among the edge candidates C, we
greedily select the top F flips that maximize the objective in Eq. (1).

THEOREM 2.1 (THM. 4 1N [3]). Consider the normalized graph
Laplacian L = D~Y2LD~Y/2 The eigenvalue Ay of L' obtained after
a single edge flip (i, j) can be approximated by A; =Ay+(1-
2Ai,j)((”yi - uyj)Z - /ly(uzi + ui}))

The computational complexity is O(n®+|C|), where w € [2,2.373)

(2.373 being the matrix multiplication exponent). It first performs
eigendecomposition to obtain eigenvalues/vectors of the input
graph in O(n®) time [8]. For each candidate edge in C, it then
computes the approximate eigenvalues in O(1) time. Finally, top
F flips are selected as the perturbations. We emphasize that our
method is easily parallelizable because the evaluations of different
edge flips in C are completely independent. In contrast, one could
iteratively select the top edge flip and then estimate the objective
based on the remaining candidates and the new attacked graph. We
found that this method has similar objective values but is much
more computationally expensive.
Spectral Sparsifiers. Spectral sparsifiers are an important type of
graph sparsifiers that aims to approximately preserve the Laplacian
eigenvalues and eigenvectors [28]. A (1 + €)-spectral sparsifier H
requires that for all continuous vectors x, the quadratic form of its
Laplacian Ly, i.e., x| Lgx, approximates that of the original graph
within 1 + € factor. Lee and Sun [17] showed that H can be con-
structed with size O(n/€?) in nearly linear time, O(m/ePM)Y in the
number of edges m. Despite the wide use of spectral sparsification
in graph learning, it is still unclear whether this additional module
is vulnerable to adversarial attacks.

We can define adversarial attacks in different ways: when tar-
geting the spectrum preservation, we want to see the Laplacian
eigenvalues and eigenvectors of the sparsifier S for the attacked
graph to be significantly different from those of the sparsifier " for
the original graph, i.e., maximize O(S, S”). Since spectral sparsifica-
tion itself well approximates the Laplacian eigenvalues/vectors, we
can simplify the problem by removing the sparsification process
and turn to the same objective O(A, A”) in Eq. (1). In the experiment,
we evaluate both objectives and verify the success of our attack
method in both setups. In addition, we can target the number of
edges in the sparsifier and strive for that the size of the sparsifier for
the attacked graph is considerably larger than that of the sparsifier
% > ¢ for constant ¢ > 1), reducing the
gain due to the sparsification. Solving this would require a novel
breakthrough and is currently under investigation. Finally, attack-
ing the sparsification runtime for a large ratio of runtime with and
without the attack is also an interesting direction.

for the input graph (e.g.,

3 Attacking Graph Distances and Spanners

Graph shortest paths and distances capture the graph structural
information and have been used explicitly or implicitly for learning
over graphs such as in graph neural networks [34, 37], spectral
methods [6, 38], and a series of graph kernel methods based on
shortest paths and connectivity [4, 14, 27]. Here we study how
to maximally change/attack shortest distances given limited edge
weight perturbations. We choose the perturbations as increasing the
weight W (e) of an edge e by d(e), which subsumes edge deletions

Adversarially Attacking Graph Properties and Sparsification in Graph Learning

(with d(e) = o0), while ignoring decreasing edge weights as it could
make the problem not affordable. Towards unnoticeable attacks,
we define two types of budgets to constrain the changes: a local
budget b(e) indicates the maximum added weight for each edge
and a global budget B specifies the maximum total added weights
for all the edges.

A general attacking objective is that for each vertex pair u, v of
multiple targeted pairs P in a graph G, their shortest distance in the
attacked graph G’, dist(u, v, G’), is no smaller than h(dist(u,v, G))
with h(-) being the distortion function. The formulated linear pro-
gram would look like the following with requirement (a):

min Z d(e)

ecE
s.t.(a)Yu,v € P, dist(u,0,G") > h(dist(u,0,G))
(b) Vp(u,v) € Q, Z(W(e) +d(e)) = h(dist(u,v,G))
eep
(c)¥p(u,0) € Q, Z(W(e) +d(e)) > h(dist(u,0v,G))
eep
fore € E,d(e) € [0,b(e)]

Zd(e) <B

eckE

@

Here requirement (a) needs to be realized. A naive method is
to compute, for every pair u,v € P, paths Q,,, between u and v
with distance smaller than h(dist(u,v, G)) and then take union of
these paths to get Q. If all the paths in Q have a distance at least
h(dist(u,v,G)) as in constraint (b), then requirement (a) holds since
the distance of a path cannot decrease after adding edge weights
in the graph. This method clearly has a high computational cost to
compute the path set Q, which is at least as expensive as finding
top-K shortest paths, O(Kn®) [35]. To avoid the overhead due to Q,
we observe that a solution of the linear program with only a subset
Q of paths in Q is optimal, as long as requirement (a) is met.

OBSERVATION 3.1. Let S be the solution of solving the linear pro-
gram (2) with constraint (c) . If requirement (a) is satisfied, S is optimal.

This inspires our main algorithm in Alg. 1, where we only include
pair-wise shortest paths in Q and generate constraints gradually.

Algorithm 1 Attacking Pair-wise Shortest Distances

Input: G(V,E,W), h(-), targeted vertex pairs P, local budget b(e), and
global budget B
Output: Added weight d(e) for every edge e
1:d(-)=0,0=0
2: while true do
3: for every u,v € P do
Compute the shortest paths p between u and v in G’ under d(-)
if dist(p) > h(dist(u,0,G)) then
Continue;
Q=0u{p}
if Q was not changed then
Break;
10: Solve the linear program (2) with constraint (c) to get new d(-)
11: return d(-);

4
5
6:
7:
8
9

Distance between Two Sets. It is well-motivated that in trans-
portation networks one is interested in elongating the shortest

5532

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

distance between two communities. The communities can be formu-
lated as source and target vertex sets S and T. The distance between
two sets of vertices U, V is defined as dist(U, V) = min{dist(u,v) |
u,v € U x V}. To attack this type of distances, we add a virtual
vertex s pointing to every vertex in S with weight 0 and a virtual ver-
tex t pointing from every vertex in T with weight 0, and then turn
to Alg. 1 with P = {(s,t)}. It is easy to see dist(s,t) = dist(S,T).
We need to carefully avoid adding weights to the virtual edges
{(s,u) |lu e S} U{(v,t)|v € T} though.
Graph Spanners. Graph spanners are a sparse graph structure
that approximates shortest distances in a graph [24, 30]. Unfortu-
nately, the robustness of graph spanners to adversarial perturba-
tions remains an intriguing open question. Attacking graph span-
ners can target the approximation of shortest distances by setting
Vu,0 € P, dist(u,v,spanner(G’)) = h(dist(u,0,G)) for a set P of
targeted pairs. However, using this constraint in a linear program
can be highly complex: for every tentative G’, we have to compute
its spanner to verify the distance inequality. A simple yet effec-
tive way is to remove spanner() and turn to linear program (2).
Since dist(u, v, Spanner(G’)) > dist(u,v,G’), requirement (a) is
still satisfied, with possibly sub-optimal attacks w.r.t. the original
constraint.
Attacking the Spanner Size. Assume a fixed spanner algorithm,
e.g., the greedy algorithm that iteratively picks the minimum edge
into the spanner when the edge’s end vertices have shortest path
distance in the spanner larger than the required value [1]. Since
the edge with the minimum weight will be chosen in each iteration,
an interesting question is whether we can add appropriate edge
weights so that significantly more edges are included in the spanner
of the attacked graph.

Experimental Results
In this section, we analyze selected results of our experiments.
Datasets. We use five real-world datasets from various domains
including Facebook, Cora, Citeseer, ca-HepTH, and LastFM. Collected
from Standford SNAP [18], these datasets cover collaboration net-
works, social networks, and citation networks. The number of nodes
ranges from 1K to 10K and the number of edges ranges from 3K to
88K.
Spectral Graph Properties. To evaluate the deviation of spectral
properties, we report the objective values in Eq. (1). We also run
spectral clustering on both attacked and clean graphs and calculate
the normalized mutual information (NMI) between their clustering
results to verify the impact on graph learning. A smaller NMI value
indicates more dissimilar clustering and is preferred. All perfor-
mance measures are averaged over five runs and reported together
with their standard deviation.

For comparison, we implement three heuristic/random baselines:
for a budget of F edge perturbations, Random randomly deletes
edges; Betweenness removes edges of top-F largest edge between-
ness centrality; and Pagerank computes the pagerank of each edge
as the mean pagerank of its two vertices and then removes edges
with top-F highest pagerank. We evaluate two types of candidates,
Cq U Cy4 (with |Cq4| = |Cy4l) and Cy4 only, and find that the latter
results in one order of magnitude larger objective, thus using Cy
as candidates and keeping consistent with the baselines. We vary
the perturbation rate across {1%, 2%, 3%, 4%, 8%, 12%, 16%, 20%}. As
shown in Fig. 1, our attack method almost always achieves the

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Chunjiang Zhu, Blake Gaines, Jing Deng, and Jinbo Bi

0.010

0.010

,ﬂ
o
»

0.025 101 1 —— Our Attack (NMI) ’ gy —— Our Attack (NMI)
0.9 ey £\‘ 3 —¥— Betweenness (NMI) \ —¥- Betweenness (NMI)
s opmee s RN -4 Pagerank (NMI) 0.008 Sos \ -4 Pagerank (NMI) 0.008
Sos - Qur Attack (NMI_ 0,020 081 v *\i ~#- Random (NMI) g N -4+ Random (NMI)
£ —1= Betweenness (NMI) 3 VA —k— Our Attack (Obj) s —4— Our Attack (Obj)
£ - Pagerank (NMI) o .6 WY ., —f— Betweenness (Obj) | 0.006 , £06 \ —¥- Betweenness (Obj) [0.006
507 * Random (NMI) 00z g™ T . =4= Pagerank (Obj) : 0z -4~ Pagerank (Obj) =
g Our Attack (Obj) < g \ Random (Obj) < g 04 Random (Obj) o
i = > 42 . 42
Z 06 Betweenness.(obl) 00108 Z 04 B 0.004 8 : 0.004 §
@ Pagerank (Obj) 2 5
3 os Random (Obj) < S 02
£ 0. . £ £
g [0.005 502 0.002 £ 0.002
2 - 2 2
04 K o g T g T - 0.0
0.000 0.0 0.000 0.000
25 50 75 100 125 150 17.5 20.0 25 50 75 100 125 150 17.5 20.0 25 50 75 100 125 150 17.5 20.0
Perturbation Rate (%) Perturbation Rate (%) Perturbation Rate (%)
(a) Facebook (b) Cora (c) Citeseer
EmE Our Attack
10 104 EEE Betweenness
—— Our Attack (NMI) 0.010 : " —— Our Attack (NMI) 0.012 = Pagerank
08 —¥— Betweenness (NMI) i (T:‘ E:""""—‘::‘V' Betweenness (NMI) ~-_<____ = Random
5 -4~ Pagerank (NMI) S 08 VN -4~ Pagerank (NMI) 0.010
8 %+ Random (NMI) 0.008 e \/ \ -# Random (NMI)
So6 —k— Our Attack (Obj) 5 ¥\ — Our Attack (Obj) 0,008 2108
£ —¥— Betweenness (Obj) o 06 \ —¥- Betweenness (Obj) o E
E -4 Pagerank (Obj) 0.006 > E] V. -1 Pagerank (Obj) - 2 S
5 Random (Obj) o E] Random (Obj) oo o8 10,006 g &
204 3 B = 2
o 0.004 © - 0.4 P ©
5 g - 0.004 102
£o2 g - -
£ 0.002 5 0.2 _ 0.002
2 2
P Sttt -
0.0 0.000 0.0 0.000
25 50 7.5 100 125 150 17.5 20.0 25 50 75 100 125 150 175 20.0 Facebook Cora Citeseer ca-HepTH LastFM

Perturbation Rate (%)

(d) ca-HepTH

Perturbation Rate (%)

(e) LastFM

Dataset

(f) Run Time for All Rates (s)

Figure 1: Performance Measures of Different Attack Methods on Spectral Clustering

poorest clustering quality in terms of the smallest NMI values for
different perturbation rates among all tested methods. In the Face-
book and Cora datasets in Fig. 1(a,b), the margins between our attack
(blue solid line) and the baselines are quite significant, although our
NMI values are not ideally close to zero. In the Citeseer, ca-HepTH,
and LastFM datasets, our attack under small perturbation rates can
already drop the NMI to almost zero, destroying the clustering
quality, as in Fig. 1(c,d,e). Betweenness often performs better than
Pagerank, since it can better characterize the importance of edges.

Fig. 1(f) shows the runtime to complete all the attacks of varied
rates from 1% to 20%. Our method has larger runtimes than Pagerank
and Random but much smaller runtimes than Betweenness, while
still formulating considerably more effective attacks. It should be
noted that our method’s runtime can be accelerated using multi-
core parallel computing, because the computations of different
candidate flips can be performed in parallel.

For attacking spectral sparsifiers, we also test the inclusion of
the sparsification process, that is maximizing O(S, S”) instead of
O(A, A’) in Eq. (1). The results remain similar as those of maximiz-
ing O(A, A”). We further vary the approximation parameter € of
spectral sparsifiers in {0.3,0.5,0.7, 0.9} in the Facebook and observe
that a larger value of € allows more errors in the approximation,
leading to slightly worse clustering quality.

Shortest Distances. For each graph data, we assign all edge weights
either equally as 1, or according to a uniform distribution between
1 and 2, or a Poisson distribution with A = 1 with 1 added to each
value. We then randomly select 50 sets of 20 pairs of vertices each
for the multiple-pairs case and 50 pairs with 20 vertices each for the
sets case. We ensure that the distance between each pair of vertices
is at least 5. For every combination of graph, selected vertices, and
attacking method, we run the same experiment 3 times and average
the relevant metrics. Experiments in which the algorithm reaches

Weights: Equal ~ Weights: Uniform Weights: Poisson Weights: Equal Weights: Uniform ~ Weights: Poisson
10K 1 ’ 10
120
T T B
| \
£
4K T . - %
a L 0 : -
%K = | :
2 = .
0 0
aLPuGreedyFirst= GreedyMin u LP = GreedyFirsts GreedyMin

(a) Perturbations (b) Run Time (s)

Figure 2: Performance of Attack Models on Multiple Pairs of Ver-
tices in the Facebook network.

200 iterations or 300 paths are automatically terminated. For all
experiments, h(x) = 5x + 0.1, and the global budget is 1000.

We adopt two greedy baselines from [22] for the comparison.
GreedyFirst considers the first edge in the path traversal order, and
assigns it whatever weight is needed to make the path satisfy its
corresponding constraint in the linear program. GreedyMin is simi-
lar but perturbs the edge with the smallest weight instead. For a
fair comparison with these baselines, we exclude local budget con-
straints from the linear program. The runtime of our algorithm does
not significantly differ when including local budget constraints.

Fig. 2 plots the performance of attack methods on multiple pairs
of vertices in the Facebook graph (other results in the full paper),
where each box plot shows the distributions of summed edge per-
turbations (a) or run time (b) for different methods. Across several
different graphs, these experiments demonstrate that our method
LP significantly outperforms greedy baselines. For example, in Face-
book, it finds solutions between 7.87 and 10.39 times less costly than
the runner-up, depending on how edge weights were assigned.
Acknowledgements
C Zhu was partially supported by NSF grant CCF-2349369.] Bi’s
research was partially sponsored by NIH grants R01-CA297855 and
R01-DA051922 and NSF grant AGS-2426655.

5533

Adversarially Attacking Graph Properties and Sparsification in Graph Learning

GenAlI Usage Disclosure

No GenAl tools were used in any stage of the research, nor in the
writing.

References

[1] R. Ahmed, G. Bodwin, S.F. Darabi, K. Hamm, L.J.M. Javad, S. Kobourov, and R.

Spence. 2020. Graph spanners: a tutorial review. Computer Science Review 37
(2020).

[2] B. Biggio, B. Nelson, and P. Laskov. 2012. Poisoning attacks against support
vector machines. In Proceedings of International Conference on Machine Learning
(ICML). 1467-1474.

[3] Aleksandar Bojchevski and Stephan Giinnemann. 2019. Adversarial attacks
on node embeddings via graph poisoning. In Proceedings of ICML Conference.
695-704.

[4] K.M. Borgwardt and H.-P. Kriegel. 2005. Shortest-path kernels on graphs. In
Proceedings of ICDM Conference. 74-81.

[5] D. Calandriello, I. Koutis, A. Lazaric, and M. Valko. 2018. Improved large-scale
graph learning through ridge spectral sparsification. In Proceedings of ICML
Conference. 688-697.

[6] J. Chen, H. Sun, D.P. Woodruff, and Q. Zhang. 2016. Communication-optimal
distributed clustering. In Proceedings of NIPS Conference. 3720-3728.

[7] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.
Adversarial attack on graph structured data. In Proceedings of ICML Conference.
1115-1124.

[8] James Demmel, Ioana Dumitriu, and Olga Holtz. 2007. Fast linear algebra is
stable. Numer. Math. 108, 1 (2007), 59-91.

[9] Sofiane Ennadir, Johannes Lutzeyer, Michalis Vazirgiannis, and El Houcine
Bergou. 2024. If You Want to Be Robust, Be Wary of Initialization. Advances in
Neural Information Processing Systems 37 (2024), 23796—-23823.

[10] Simon Geisler, Daniel Ziugner, and Stephan Giinnemann. 2020. Reliable Graph
Neural Networks via Robust Aggregation. In Proceedings of NeurIPS Conference.

[11] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263-1272.

[12] Anuj Godase, Md Khaledur Rahman, and Ariful Azad. 2021. GNNfam: utilizing

sparsity in protein family predictions using graph neural networks. In Proceedings

of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health

Informatics. 1-10.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

harnessing adversarial examples. In Proceedings of ICLR Conference.

[14] L. Hermansson, F. D. Johansson, and O. Watanabe. 2015. Generalized shortest
path kernel on graphs. In Proceedings of International Conference on Discovery
Science. 78-85.

[15] E.Israeli and R. K. Wood. 2002. Shortest-Path Network Interdiction. Networks
40, 2 (2002), 97-111.

[16] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. In Proceedings of ICLR Conference.

[17] Y.T. Lee and H. Sun. 2017. An SDP-based algorithm for linear-sized spectral
sparsification. In Proceedings of ACM STOC Conference. 678-687.

[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[19] X. Liu, S. Si, X. Zhu, Y. Li, and C. Hsieh. 2019. A unified framework for data
poisoning attack to graph-based semi-supervised learning. In Advances in Neural
Information Processing Systems (NeurIPS). 9777-9787.

[20] Nikita Malik, Rahul Gupta, and Sandeep Kumar. 2025. Hyperdefender: A robust
framework for hyperbolic gnns. In Proceedings of the AAAI Conference on Artificial

[13

5534

[21

[22

[23

[24

[26

[27]

(28]

[20

(30]

[32

[33

[34

[35

(37]

[38

[39

[40

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

Intelligence, Vol. 39. 19396-19404.

Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander,
Adam Sanders, Hatem Helal, Deniz Beker, Ladislav Rampések, and Dominique
Beaini. 2022. Gps++: An optimised hybrid mpnn/transformer for molecular
property prediction. arXiv preprint arXiv:2212.02229 (2022).

Benjamin A Miller, Zohair Shafi, Wheeler Ruml, Yevgeniy Vorobeychik, Tina
Eliassi-Rad, and Scott Alfeld. 2021. Optimal Edge Weight Perturbations to Attack
Shortest Paths. arXiv preprint arXiv:2107.03347 (2021).

AY. Ng, ML Jordan, and Y. Weiss. 2001. On spectral clustering: analysis and an
algorithm. In Proceedings of NIPS Conference. 849-856.

D. Peleg and A.A. Schaffer. 1989. Graph spanners. Journal of Graph Theory 13, 1
(1989), 99-116.

V. Sadhanala, Y.-X. Wang, and R. J. Tibshirani. 2016. Graph sparsification ap-
proaches for Laplacian smoothing. In Proceedings of AISTATS Conference. 1250
1259.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. 2021. E (n) equi-
variant graph neural networks. In International conference on machine learning.
PMLR, 9323-9332.

N. Shervashidze, P. Schweitzer, E.J. van Leeuwen, K. Mehlhorn, and K.M. Borg-
wardt. 2011. Weisfeiler-Lehman graph kernels. Journal of Machine Learning
Research 12, 77 (2011), 2539-2561.

D.A. Spielman and S.-H. Teng. 2004. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proceedings of
STOC Conference. 81-90.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In Proceedings of ICLR Conference.

M. Thorup and U. Zwick. 2005. Approximate distance oracles. J. ACM 52, 1
(2005), 1-24.

B. Wang and N. Z. Gong. 2019. Attacking graph-based classification via manipu-
lating the graph structure. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2023-2040.

Jiahao Wu, Ning Lu, Zeiyu Dai, Kun Wang, Wenqi Fan, Shengcai Liu, Qing Li, and
Ke Tang. 2024. Backdoor graph condensation. arXiv preprint arXiv:2407.11025
(2024).

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-
neous network representation learning: A unified framework with survey and
benchmark. IEEE Transactions on Knowledge and Data Engineering 34, 10 (2020),
4854-4873.

Y. Yang, X. Wang, M. Song, J. Yuan, and D. Tao. 2019. SPAGAN: shortest path
graph attention network. In Proceedings of IJCAI Conference. 4099-4015.

JinY Yen. 1971. Finding the k shortest loopless paths in a network. management
Science 17, 11 (1971), 712-716.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly
for graph representation? Advances in neural information processing systems 34
(2021), 28877-28888.

J. You, R. Ying, and J. Leskovec. 2019. Position-aware graph neural networks. In
Proceedings of ICML Conference. 7134-7143.

CJ. Zhy, S. Storandt, K.-Y. Lam, S. Han, and J. Bi. 2019. Improved dynamic graph
learning through fault-tolerant sparsification. In Proceedings of ICML Conference.
7624-7633.

Daniel Ziigner, Amir Akbarnejad, and Stephan Giinnemann. 2018. Adversar-
ial attacks on neural networks for graph data. In Proceedings of ACM SIGKDD
Conference. 2847-2856.

Daniel Ziigner and Stephan Giinnemann. 2019. Certifiable robustness and ro-
bust training for graph convolutional networks. In Proceedings of ACM SIGKDD
Conference. 246-256.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Attacking Spectral Properties and Sparsifiers
	3 Attacking Graph Distances and Spanners
	4 Experimental Results
	References

