
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3746252.3760882
.

.

SHORT-PAPER

Adversarially Aacking Graph Properties and Sparsification in Graph
Learning

CHUNJIANG ZHU, Old Dominion University, Norfolk, VA, United States
.

BLAKE B GAINES, University of Connecticut, Storrs, CT, United States
.

JINGFENG DENG, The University of North Carolina at Greensboro, Greensboro, NC, United
States
.

JINBO BI, University of Connecticut, Storrs, CT, United States
.

.

.

Open Access Support provided by:
.

Old Dominion University
.

The University of North Carolina at Greensboro
.

University of Connecticut
.

PDF Download
3746252.3760882.pdf
27 January 2026
Total Citations: 0
Total Downloads: 68
.

.

Published: 10 November 2025
.

.

Citation in BibTeX format
.

.

CIKM '25: The 34th ACM International
Conference on Information and
Knowledge Management
November 10 - 14, 2025
Seoul, Republic of Korea
.

.

Conference Sponsors:
SIGWEB
SIGIR

CIKM '25: Proceedings of the 34th ACM International Conference on Information and Knowledge Management (November 2025)
hps://doi.org/10.1145/3746252.3760882

ISBN: 9798400720406

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3746252.3760882
https://dl.acm.org/doi/10.1145/3746252.3760882
https://dl.acm.org/doi/10.1145/contrib-99660914471
https://dl.acm.org/doi/10.1145/institution-60007652
https://dl.acm.org/doi/10.1145/contrib-99661665931
https://dl.acm.org/doi/10.1145/institution-60022659
https://dl.acm.org/doi/10.1145/contrib-81318488254
https://dl.acm.org/doi/10.1145/institution-60018474
https://dl.acm.org/doi/10.1145/institution-60018474
https://dl.acm.org/doi/10.1145/contrib-81100131666
https://dl.acm.org/doi/10.1145/institution-60022659
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60007652
https://dl.acm.org/doi/10.1145/institution-60018474
https://dl.acm.org/doi/10.1145/institution-60022659
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3746252.3760882&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/cikm
https://dl.acm.org/conference/cikm
https://dl.acm.org/conference/cikm
https://dl.acm.org/sig/sigweb
https://dl.acm.org/sig/sigir
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746252.3760882&domain=pdf&date_stamp=2025-11-10

Adversarially Attacking Graph Properties and Sparsification in
Graph Learning

Chunjiang Zhu
∗

Old Dominion University

Norfolk, VA, USA

Blake Gaines

University of Connecticut

Storrs, CT, USA

Jing Deng

UNC Greensboro

Greensboro, NC, USA

Jinbo Bi

University of Connecticut

Storrs, CT, USA

Abstract
Graph neural networks and graph transformers explicitly or im-
plicitly rely on fundamental properties of the underlying graph,

such as spectral properties and shortest-path distances. However,

it is still not clear how these graph properties are vulnerable to

adversarial attacks and what impacts this has on the downstream

graph learning. Moreover, while graph sparsification has been used

to improve computational cost of learning over graphs, its suscep-

tibility to adversarial attacks has not been studied. In this paper,

we study adversarial attacks on graph properties and graph sparsi-

fication and their impacts on downstream graph learning, paving

the way for how to protect against these potential attacks. Our

proposed methods are effective in attacking spectral properties,

shortest distances, and graph sparsification as demonstrated in our

experimental evaluation.

CCS Concepts
• Theory of computation → Graph algorithms analysis; •
Security and privacy → Software and application security.

Keywords
Graph Machine Learning, Spectral Graph Properties, Shortest Dis-

tances, Shortest Path Interdiction

ACM Reference Format:
Chunjiang Zhu, Blake Gaines, Jing Deng, and Jinbo Bi. 2025. Adversarially

Attacking Graph Properties and Sparsification in Graph Learning. In Proceed-
ings of the 34th ACM International Conference on Information and Knowledge
Management (CIKM ’25), November 10–14, 2025, Seoul, Republic of Korea.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3746252.3760882

1 Introduction
Graph machine learning, such as graph neural networks (GNNs)

[11, 16, 26] and graph transformers [21, 36], has received signifi-

cant attention, thanks to its robust performance in various graph

prediction tasks and abundant instances of graph-structured data

in real-life and scientific fields. These advanced graph models ex-
plicitly or implicitly rely on inherent properties of the underlying

graph, such as spectral properties and shortest-path distances. In

network and graph data, however, false data can be easily injected

by adversaries: spammers can create fake followers on online social

∗
Corresponding author, Email: czhu@odu.edu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License.

CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3760882

networks, false “knowledge” triplets that are hard to verify can

be added to a knowledge graph, etc. It is crucial to obtain a good

understanding of the impact of these adversarial attacks on the

graph properties and downstream graph learning, before develop-

ing effective defense strategies.

In addition, it is still open to address the tradeoff between the

expressive power and the computational cost. Recently, graph spar-

sification [28], which can approximate a graph by a small subgraph,

has been used to improve the computational overhead of graph

learning [6, 12, 25, 38]. Graph learning models run faster in small

graphs while generating comparable performance [25, 33] if the

small graphs are a good approximation of the original graphs. How-

ever, it is still under-explored whether this newly added graph

sparsification module is secure and reliable and whether it is a

vulnerable point for adversarial attacks. For example, if the learned

graph representation is used for downstream graph clustering, a

dirty spectrally sparsified graph may not contain the key infor-

mation of the original graph for spectral clustering. Considering

routing algorithms for traffic management in wireless networks

and machine learning based network resource allocation and opti-

misation in wireless networks, if a GNN model needs to work on a

sparsified network, and an adversary attacks sparsification process,

it can alter the GNN prediction.

Our contributions in this exploration are summarized as follows:

• We study adversarial attacks on spectral properties in a graph

and spectral sparsification and their impacts on downstream

graph learning.

• We investigate adversarial attacks on graph shortest-path

distances and graph spanners through linear programming.

The proposed method can simultaneously elongate the short-

est paths between multiple pairs of vertices using optimal

perturbations while maintaining a small runtime.

• We have conducted extensive experiments to demonstrate

the effectiveness of our proposed methods in attacking graph

properties and sparsification: a small budget of perturbing

less than 5% of graph edges can significantly deteriorate

the quality of graph clustering results; the shortest path

interdiction method enlarges distances for multiple pairs

of vertices using optimal perturbations, often much smaller

than baselines, under comparable runtime.

Related Work. Adversarial attacks on machine learning have at-

tracted increasing research interest [2, 13, 29]. Small, often unno-

ticeable, perturbations on the samples designed by the attackers can

completely alter the output of themachine learningmodels. Like the

studies on grid data or other data, carefully crafted small perturba-

tions to graph structure and/or node features can also produce mod-

els with wrong prediction results [3, 7, 9, 10, 19, 20, 31, 32, 39, 40].

While these methods often directly target attacking a specific task,

5530

https://doi.org/10.1145/3746252.3760882
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3746252.3760882

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Chunjiang Zhu, Blake Gaines, Jing Deng, and Jinbo Bi

it is unclear how to attack fundamental properties of the underlying

graph, such as spectral properties and shortest distances, and what

impacts this has on downstream machine learning tasks.

Our problem of attacking shortest paths is also known as the

shortest path interdiction [15, 22]. Miller et al. [22] increase edge

weights such that a pre-chosen path connecting two vertices be-

comes their shortest path in the perturbed graph. This method can

be used to solve a simplified version of our problem when only a

single vertex pair is considered. However, their method requires

calculating the second shortest path using Yen’s algorithm [35],

and thus incurs cubic computational cost. In contrast, our proposed

model works for multiple vertex pairs and even all pairs, using only

the shortest path algorithm.

2 Attacking Spectral Properties and Sparsifiers
Spectral Properties. Spectral graph theory studies inherently

combinatorial graphs from an algebraic perspective and spectral

properties have been exploited explicitly or implicitly in graph

machine learning, e.g., spectral clustering [23], Laplacian smoothing

[25], and semi-supervised learning [5]. Define the graph Laplacian
of a graph𝐺 as 𝐿 = 𝐷 −𝐴 where𝐴 is the adjacency matrix of𝐺 and

𝐷 is a diagonal matrix with the 𝑖𝑡ℎ diagonal entry equal to the sum

over the 𝑖-th row of 𝐴. The eigenvalues 𝜆 and eigenvectors u of the

Laplacian matrix are called Laplacian eigenvalues and eigenvectors.

Our goal is to study the impacts of adversarial attacks on spectral

graph properties and subsequent graph learning tasks based on

these properties.

We consider undirected unweighted graphs and use edge flipping

as the attacking method, specifically, adding new edges by flipping

0 to 1 in the adjacency matrix 𝐴 and deleting existing edges by

flipping 1 to 0 to get the graph 𝐴′
after the attack. To measure the

changes in the Laplacian eigenvalues and eigenvectors, we adopt the

mean square error (MSE) between the eigenvalues and normalized

mutual information (NMI) of the eigenvectors, respectively. Then
the attacking problem under a budget of flipping at most 𝐹 edges

can be re-formulated as:

max

𝐴′∈𝑅𝑛×𝑛
𝑂 (𝐴,𝐴′) = 𝑓 (𝜆, 𝜆′) + 𝛼 · 𝑔(u, u′)

= max

𝐴′∈𝑅𝑛×𝑛

1

𝑛

𝑛∑︁
𝑖=1

(
(𝜆𝑖 − 𝜆′𝑖)

2 + 𝛼 · NMI(u𝑖 , u′𝑖)
)
,

s. t. | |𝐴 −𝐴′ | |0 ≤ 2𝐹, (𝐴′)𝑇 = 𝐴′ .

(1)

where 𝛼 controls the relative weight. Because of the undirected na-

ture of graphs, 𝐴′
is symmetric and the zero-norm of the difference

between 𝐴 and 𝐴′
is not larger than 2𝐹 .

The search space in Eq. (1) is over all possible 𝑛-vertex attacked

graphs. However, we can generate a set of candidates for edge flips,

𝐶 = 𝐶𝑎 ∪𝐶𝑑 , which includes candidates to add 𝐶𝑎 and candidates

to delete𝐶𝑑 . For adding edges, we randomly sample |𝐶𝑎 | candidate
vertex pairs with no edge. For 𝐶𝑑 , we include all existing edges in

the clean graph while avoiding generating any singleton vertices.

To avoid computing the eigenvalues from scratch and reduce

complexity, we employ the fast approximation method of Laplacian

eigenvalues in [3] as shown in Theorem 2.1. The approximation

of eigenvectors is more complicated and time-consuming and thus

will be addressed in future study. Among the edge candidates𝐶 , we

greedily select the top 𝐹 flips that maximize the objective in Eq. (1).

Theorem 2.1 (Thm. 4 in [3]). Consider the normalized graph
Laplacian L = 𝐷−1/2𝐿𝐷−1/2. The eigenvalue 𝜆′𝑦 of L′ obtained after
a single edge flip (𝑖, 𝑗) can be approximated by 𝜆′𝑦 = 𝜆𝑦 + (1 −
2𝐴𝑖, 𝑗)

(
(𝑢𝑦𝑖 − 𝑢𝑦 𝑗)2 − 𝜆𝑦 (𝑢2𝑦𝑖 + 𝑢

2

𝑦 𝑗
)
)
.

The computational complexity is𝑂 (𝑛𝜔+|𝐶 |), where𝜔 ∈ [2, 2.373)
(2.373 being the matrix multiplication exponent). It first performs

eigendecomposition to obtain eigenvalues/vectors of the input

graph in 𝑂 (𝑛𝜔) time [8]. For each candidate edge in 𝐶 , it then

computes the approximate eigenvalues in 𝑂 (1) time. Finally, top

𝐹 flips are selected as the perturbations. We emphasize that our

method is easily parallelizable because the evaluations of different

edge flips in 𝐶 are completely independent. In contrast, one could

iteratively select the top edge flip and then estimate the objective

based on the remaining candidates and the new attacked graph. We

found that this method has similar objective values but is much

more computationally expensive.

Spectral Sparsifiers. Spectral sparsifiers are an important type of

graph sparsifiers that aims to approximately preserve the Laplacian

eigenvalues and eigenvectors [28]. A (1 + 𝜖)-spectral sparsifier 𝐻
requires that for all continuous vectors x, the quadratic form of its

Laplacian 𝐿𝐻 , i.e., x𝑇 𝐿𝐻x, approximates that of the original graph

within 1 ± 𝜖 factor. Lee and Sun [17] showed that 𝐻 can be con-

structed with size𝑂 (𝑛/𝜖2) in nearly linear time, 𝑂̃ (𝑚/𝜖𝑂 (1)) in the

number of edges𝑚. Despite the wide use of spectral sparsification

in graph learning, it is still unclear whether this additional module

is vulnerable to adversarial attacks.

We can define adversarial attacks in different ways: when tar-

geting the spectrum preservation, we want to see the Laplacian

eigenvalues and eigenvectors of the sparsifier 𝑆 for the attacked

graph to be significantly different from those of the sparsifier 𝑆 ′ for
the original graph, i.e., maximize 𝑂 (𝑆, 𝑆 ′). Since spectral sparsifica-
tion itself well approximates the Laplacian eigenvalues/vectors, we

can simplify the problem by removing the sparsification process

and turn to the same objective𝑂 (𝐴,𝐴′) in Eq. (1). In the experiment,

we evaluate both objectives and verify the success of our attack

method in both setups. In addition, we can target the number of
edges in the sparsifier and strive for that the size of the sparsifier for

the attacked graph is considerably larger than that of the sparsifier

for the input graph (e.g.,
|𝑆 ′ |
|𝑆 | > 𝑐 for constant 𝑐 > 1), reducing the

gain due to the sparsification. Solving this would require a novel

breakthrough and is currently under investigation. Finally, attack-

ing the sparsification runtime for a large ratio of runtime with and

without the attack is also an interesting direction.

3 Attacking Graph Distances and Spanners
Graph shortest paths and distances capture the graph structural

information and have been used explicitly or implicitly for learning

over graphs such as in graph neural networks [34, 37], spectral

methods [6, 38], and a series of graph kernel methods based on

shortest paths and connectivity [4, 14, 27]. Here we study how

to maximally change/attack shortest distances given limited edge

weight perturbations. We choose the perturbations as increasing the
weight𝑊 (𝑒) of an edge 𝑒 by 𝑑 (𝑒), which subsumes edge deletions

5531

Adversarially Attacking Graph Properties and Sparsification in Graph Learning CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

(with 𝑑 (𝑒) = ∞), while ignoring decreasing edge weights as it could

make the problem not affordable. Towards unnoticeable attacks,

we define two types of budgets to constrain the changes: a local
budget 𝑏 (𝑒) indicates the maximum added weight for each edge

and a global budget 𝐵 specifies the maximum total added weights

for all the edges.

A general attacking objective is that for each vertex pair 𝑢, 𝑣 of

multiple targeted pairs 𝑃 in a graph𝐺 , their shortest distance in the

attacked graph𝐺 ′
, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺 ′), is no smaller than ℎ(𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺))

with ℎ(·) being the distortion function. The formulated linear pro-

gram would look like the following with requirement (a):

min

∑︁
𝑒∈𝐸

𝑑 (𝑒)

𝑠 .𝑡 . (𝑎) ∀𝑢, 𝑣 ∈ 𝑃,𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺 ′) ≥ ℎ(𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺))

(𝑏) ∀𝑝 (𝑢, 𝑣) ∈ 𝑄,
∑︁
𝑒∈𝑝

(𝑊 (𝑒) + 𝑑 (𝑒)) ≥ ℎ(𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺))

(𝑐) ∀𝑝 (𝑢, 𝑣) ∈ 𝑄,
∑︁
𝑒∈𝑝

(𝑊 (𝑒) + 𝑑 (𝑒)) ≥ ℎ(𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺))

for 𝑒 ∈ 𝐸,𝑑 (𝑒) ∈ [0, 𝑏 (𝑒)]∑︁
𝑒∈𝐸

𝑑 (𝑒) ≤ 𝐵

(2)

Here requirement (a) needs to be realized. A naive method is

to compute, for every pair 𝑢, 𝑣 ∈ 𝑃 , paths 𝑄𝑢,𝑣 between 𝑢 and 𝑣

with distance smaller than ℎ(𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺)) and then take union of

these paths to get 𝑄 . If all the paths in 𝑄 have a distance at least

ℎ(𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺)) as in constraint (b), then requirement (a) holds since

the distance of a path cannot decrease after adding edge weights

in the graph. This method clearly has a high computational cost to

compute the path set 𝑄 , which is at least as expensive as finding

top-𝐾 shortest paths,𝑂 (𝐾𝑛3) [35]. To avoid the overhead due to𝑄 ,
we observe that a solution of the linear program with only a subset

𝑄 of paths in 𝑄 is optimal, as long as requirement (a) is met.

Observation 3.1. Let 𝑆 be the solution of solving the linear pro-
gram (2) with constraint (c) . If requirement (a) is satisfied, 𝑆 is optimal.

This inspires ourmain algorithm in Alg. 1, where we only include

pair-wise shortest paths in 𝑄 and generate constraints gradually.

Algorithm 1 Attacking Pair-wise Shortest Distances

Input: 𝐺 (𝑉 , 𝐸,𝑊) , ℎ (·) , targeted vertex pairs 𝑃 , local budget 𝑏 (𝑒) , and
global budget 𝐵

Output: Added weight 𝑑 (𝑒) for every edge 𝑒

1: 𝑑 (·) = 0;𝑄 = ∅
2: while 𝑡𝑟𝑢𝑒 do
3: for every 𝑢, 𝑣 ∈ 𝑃 do
4: Compute the shortest paths 𝑝 between 𝑢 and 𝑣 in𝐺 ′

under 𝑑 (·)
5: if 𝑑𝑖𝑠𝑡 (𝑝) ≥ ℎ (𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺)) then
6: Continue;
7: 𝑄 = 𝑄 ∪ {𝑝 }
8: if 𝑄 was not changed then
9: Break;
10: Solve the linear program (2) with constraint (c) to get new 𝑑 (·)
11: return 𝑑 (·) ;

Distance between Two Sets. It is well-motivated that in trans-

portation networks one is interested in elongating the shortest

distance between two communities. The communities can be formu-

lated as source and target vertex sets 𝑆 and𝑇 . The distance between

two sets of vertices𝑈 ,𝑉 is defined as 𝑑𝑖𝑠𝑡 (𝑈 ,𝑉) = min{𝑑𝑖𝑠𝑡 (𝑢, 𝑣) |
𝑢, 𝑣 ∈ 𝑈 × 𝑉 }. To attack this type of distances, we add a virtual

vertex 𝑠 pointing to every vertex in 𝑆 with weight 0 and a virtual ver-

tex 𝑡 pointing from every vertex in 𝑇 with weight 0, and then turn

to Alg. 1 with 𝑃 = {(𝑠, 𝑡)}. It is easy to see 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = 𝑑𝑖𝑠𝑡 (𝑆,𝑇).
We need to carefully avoid adding weights to the virtual edges

{(𝑠,𝑢) |𝑢 ∈ 𝑆} ∪ {(𝑣, 𝑡) | 𝑣 ∈ 𝑇 } though.
Graph Spanners. Graph spanners are a sparse graph structure

that approximates shortest distances in a graph [24, 30]. Unfortu-

nately, the robustness of graph spanners to adversarial perturba-

tions remains an intriguing open question. Attacking graph span-

ners can target the approximation of shortest distances by setting

∀𝑢, 𝑣 ∈ 𝑃,𝑑𝑖𝑠𝑡 (𝑢, 𝑣, 𝑠𝑝𝑎𝑛𝑛𝑒𝑟 (𝐺 ′)) ≥ ℎ(𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺)) for a set 𝑃 of

targeted pairs. However, using this constraint in a linear program

can be highly complex: for every tentative 𝐺 ′
, we have to compute

its spanner to verify the distance inequality. A simple yet effec-

tive way is to remove 𝑠𝑝𝑎𝑛𝑛𝑒𝑟 () and turn to linear program (2).

Since 𝑑𝑖𝑠𝑡 (𝑢, 𝑣, 𝑆𝑝𝑎𝑛𝑛𝑒𝑟 (𝐺 ′)) ≥ 𝑑𝑖𝑠𝑡 (𝑢, 𝑣,𝐺 ′), requirement (a) is

still satisfied, with possibly sub-optimal attacks w.r.t. the original

constraint.

Attacking the Spanner Size. Assume a fixed spanner algorithm,

e.g., the greedy algorithm that iteratively picks the minimum edge

into the spanner when the edge’s end vertices have shortest path

distance in the spanner larger than the required value [1]. Since

the edge with the minimum weight will be chosen in each iteration,

an interesting question is whether we can add appropriate edge

weights so that significantly more edges are included in the spanner

of the attacked graph.

4 Experimental Results
In this section, we analyze selected results of our experiments.

Datasets. We use five real-world datasets from various domains

including Facebook, Cora, Citeseer, ca-HepTH, and LastFM. Collected

from Standford SNAP [18], these datasets cover collaboration net-

works, social networks, and citation networks. The number of nodes

ranges from 1K to 10K and the number of edges ranges from 3K to

88K.

Spectral Graph Properties. To evaluate the deviation of spectral

properties, we report the objective values in Eq. (1). We also run

spectral clustering on both attacked and clean graphs and calculate

the normalized mutual information (NMI) between their clustering

results to verify the impact on graph learning. A smaller NMI value
indicates more dissimilar clustering and is preferred. All perfor-

mance measures are averaged over five runs and reported together

with their standard deviation.

For comparison, we implement three heuristic/random baselines:

for a budget of 𝐹 edge perturbations, Random randomly deletes

edges; Betweenness removes edges of top-𝐹 largest edge between-

ness centrality; and Pagerank computes the pagerank of each edge

as the mean pagerank of its two vertices and then removes edges

with top-𝐹 highest pagerank. We evaluate two types of candidates,

𝐶𝑎 ∪ 𝐶𝑑 (with |𝐶𝑎 | = |𝐶𝑑 |) and 𝐶𝑑 only, and find that the latter

results in one order of magnitude larger objective, thus using 𝐶𝑑
as candidates and keeping consistent with the baselines. We vary

the perturbation rate across {1%, 2%, 3%, 4%, 8%, 12%, 16%, 20%}. As
shown in Fig. 1, our attack method almost always achieves the

5532

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Chunjiang Zhu, Blake Gaines, Jing Deng, and Jinbo Bi

(a) Facebook (b) Cora (c) Citeseer

(d) ca-HepTH (e) LastFM (f) Run Time for All Rates (s)

Figure 1: Performance Measures of Different Attack Methods on Spectral Clustering

poorest clustering quality in terms of the smallest NMI values for
different perturbation rates among all tested methods. In the Face-
book and Cora datasets in Fig. 1(a,b), the margins between our attack

(blue solid line) and the baselines are quite significant, although our

NMI values are not ideally close to zero. In the Citeseer, ca-HepTH,
and LastFM datasets, our attack under small perturbation rates can

already drop the NMI to almost zero, destroying the clustering

quality, as in Fig. 1(c,d,e). Betweenness often performs better than

Pagerank, since it can better characterize the importance of edges.

Fig. 1(f) shows the runtime to complete all the attacks of varied

rates from 1% to 20%. Ourmethod has larger runtimes than Pagerank
and Random but much smaller runtimes than Betweenness, while
still formulating considerably more effective attacks. It should be

noted that our method’s runtime can be accelerated using multi-

core parallel computing, because the computations of different

candidate flips can be performed in parallel.

For attacking spectral sparsifiers, we also test the inclusion of

the sparsification process, that is maximizing 𝑂 (𝑆, 𝑆 ′) instead of

𝑂 (𝐴,𝐴′) in Eq. (1). The results remain similar as those of maximiz-

ing 𝑂 (𝐴,𝐴′). We further vary the approximation parameter 𝜖 of

spectral sparsifiers in {0.3, 0.5, 0.7, 0.9} in the Facebook and observe

that a larger value of 𝜖 allows more errors in the approximation,

leading to slightly worse clustering quality.

ShortestDistances. For each graph data, we assign all edgeweights
either equally as 1, or according to a uniform distribution between

1 and 2, or a Poisson distribution with 𝜆 = 1 with 1 added to each

value. We then randomly select 50 sets of 20 pairs of vertices each

for the multiple-pairs case and 50 pairs with 20 vertices each for the

sets case. We ensure that the distance between each pair of vertices

is at least 5. For every combination of graph, selected vertices, and

attacking method, we run the same experiment 3 times and average

the relevant metrics. Experiments in which the algorithm reaches

--

-�
--

--

--

-

--

--

0 LP O GreedyFirst ■ GreedyMin

Weights: Equal Weights: Uniform Weights: Poisson

10K

8K

6K

4K

2K

0

Pe
rtu

rb
at

io
ns

(a) Perturbations

140

120

100

80

60

40

20

0

•

• •

•

--

-- --

--

--

--

■ LP ■ GreedyFirst ■ GreedyMin

•

•

•

•

Weights: Equal Weights: Uniform Weights: Poisson

R
un

 T
im

e
(b) Run Time (s)

Figure 2: Performance of Attack Models on Multiple Pairs of Ver-
tices in the Facebook network.

200 iterations or 300 paths are automatically terminated. For all

experiments, ℎ(𝑥) = 5𝑥 + 0.1, and the global budget is 1000.

We adopt two greedy baselines from [22] for the comparison.

GreedyFirst considers the first edge in the path traversal order, and

assigns it whatever weight is needed to make the path satisfy its

corresponding constraint in the linear program. GreedyMin is simi-

lar but perturbs the edge with the smallest weight instead. For a

fair comparison with these baselines, we exclude local budget con-

straints from the linear program. The runtime of our algorithm does

not significantly differ when including local budget constraints.

Fig. 2 plots the performance of attack methods on multiple pairs

of vertices in the Facebook graph (other results in the full paper),

where each box plot shows the distributions of summed edge per-

turbations (a) or run time (b) for different methods. Across several

different graphs, these experiments demonstrate that our method

LP significantly outperforms greedy baselines. For example, in Face-
book, it finds solutions between 7.87 and 10.39 times less costly than

the runner-up, depending on how edge weights were assigned.

Acknowledgements
C Zhu was partially supported by NSF grant CCF-2349369. J Bi’s

research was partially sponsored by NIH grants R01-CA297855 and

R01-DA051922 and NSF grant AGS-2426655.

5533

Adversarially Attacking Graph Properties and Sparsification in Graph Learning CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

GenAI Usage Disclosure
No GenAI tools were used in any stage of the research, nor in the

writing.

References
[1] R. Ahmed, G. Bodwin, S.F. Darabi, K. Hamm, L.J.M. Javad, S. Kobourov, and R.

Spence. 2020. Graph spanners: a tutorial review. Computer Science Review 37

(2020).

[2] B. Biggio, B. Nelson, and P. Laskov. 2012. Poisoning attacks against support

vector machines. In Proceedings of International Conference on Machine Learning
(ICML). 1467–1474.

[3] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial attacks

on node embeddings via graph poisoning. In Proceedings of ICML Conference.
695–704.

[4] K.M. Borgwardt and H.-P. Kriegel. 2005. Shortest-path kernels on graphs. In

Proceedings of ICDM Conference. 74–81.
[5] D. Calandriello, I. Koutis, A. Lazaric, and M. Valko. 2018. Improved large-scale

graph learning through ridge spectral sparsification. In Proceedings of ICML
Conference. 688–697.

[6] J. Chen, H. Sun, D.P. Woodruff, and Q. Zhang. 2016. Communication-optimal

distributed clustering. In Proceedings of NIPS Conference. 3720–3728.
[7] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.

Adversarial attack on graph structured data. In Proceedings of ICML Conference.
1115–1124.

[8] James Demmel, Ioana Dumitriu, and Olga Holtz. 2007. Fast linear algebra is

stable. Numer. Math. 108, 1 (2007), 59–91.
[9] Sofiane Ennadir, Johannes Lutzeyer, Michalis Vazirgiannis, and El Houcine

Bergou. 2024. If You Want to Be Robust, Be Wary of Initialization. Advances in
Neural Information Processing Systems 37 (2024), 23796–23823.

[10] Simon Geisler, Daniel Zügner, and Stephan Günnemann. 2020. Reliable Graph

Neural Networks via Robust Aggregation. In Proceedings of NeurIPS Conference.
[11] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[12] Anuj Godase, Md Khaledur Rahman, and Ariful Azad. 2021. GNNfam: utilizing

sparsity in protein family predictions using graph neural networks. In Proceedings
of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health
Informatics. 1–10.

[13] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

harnessing adversarial examples. In Proceedings of ICLR Conference.
[14] L. Hermansson, F. D. Johansson, and O. Watanabe. 2015. Generalized shortest

path kernel on graphs. In Proceedings of International Conference on Discovery
Science. 78–85.

[15] E. Israeli and R. K. Wood. 2002. Shortest-Path Network Interdiction. Networks
40, 2 (2002), 97–111.

[16] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with

graph convolutional networks. In Proceedings of ICLR Conference.
[17] Y.T. Lee and H. Sun. 2017. An SDP-based algorithm for linear-sized spectral

sparsification. In Proceedings of ACM STOC Conference. 678–687.
[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[19] X. Liu, S. Si, X. Zhu, Y. Li, and C. Hsieh. 2019. A unified framework for data

poisoning attack to graph-based semi-supervised learning. In Advances in Neural
Information Processing Systems (NeurIPS). 9777–9787.

[20] Nikita Malik, Rahul Gupta, and Sandeep Kumar. 2025. Hyperdefender: A robust

framework for hyperbolic gnns. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 39. 19396–19404.
[21] Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander,

Adam Sanders, Hatem Helal, Deniz Beker, Ladislav Rampášek, and Dominique

Beaini. 2022. Gps++: An optimised hybrid mpnn/transformer for molecular

property prediction. arXiv preprint arXiv:2212.02229 (2022).
[22] Benjamin A Miller, Zohair Shafi, Wheeler Ruml, Yevgeniy Vorobeychik, Tina

Eliassi-Rad, and Scott Alfeld. 2021. Optimal Edge Weight Perturbations to Attack

Shortest Paths. arXiv preprint arXiv:2107.03347 (2021).

[23] A.Y. Ng, M.I. Jordan, and Y. Weiss. 2001. On spectral clustering: analysis and an

algorithm. In Proceedings of NIPS Conference. 849–856.
[24] D. Peleg and A.A. Schaffer. 1989. Graph spanners. Journal of Graph Theory 13, 1

(1989), 99–116.

[25] V. Sadhanala, Y.-X. Wang, and R. J. Tibshirani. 2016. Graph sparsification ap-

proaches for Laplacian smoothing. In Proceedings of AISTATS Conference. 1250–
1259.

[26] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. 2021. E (n) equi-

variant graph neural networks. In International conference on machine learning.
PMLR, 9323–9332.

[27] N. Shervashidze, P. Schweitzer, E.J. van Leeuwen, K. Mehlhorn, and K.M. Borg-

wardt. 2011. Weisfeiler-Lehman graph kernels. Journal of Machine Learning
Research 12, 77 (2011), 2539–2561.

[28] D.A. Spielman and S.-H. Teng. 2004. Nearly-linear time algorithms for graph

partitioning, graph sparsification, and solving linear systems. In Proceedings of
STOC Conference. 81–90.

[29] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.

In Proceedings of ICLR Conference.
[30] M. Thorup and U. Zwick. 2005. Approximate distance oracles. J. ACM 52, 1

(2005), 1–24.

[31] B. Wang and N. Z. Gong. 2019. Attacking graph-based classification via manipu-

lating the graph structure. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2023–2040.

[32] JiahaoWu, Ning Lu, Zeiyu Dai, KunWang, Wenqi Fan, Shengcai Liu, Qing Li, and

Ke Tang. 2024. Backdoor graph condensation. arXiv preprint arXiv:2407.11025
(2024).

[33] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-

neous network representation learning: A unified framework with survey and

benchmark. IEEE Transactions on Knowledge and Data Engineering 34, 10 (2020),

4854–4873.

[34] Y. Yang, X. Wang, M. Song, J. Yuan, and D. Tao. 2019. SPAGAN: shortest path

graph attention network. In Proceedings of IJCAI Conference. 4099–4015.
[35] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. management

Science 17, 11 (1971), 712–716.
[36] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,

Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly

for graph representation? Advances in neural information processing systems 34
(2021), 28877–28888.

[37] J. You, R. Ying, and J. Leskovec. 2019. Position-aware graph neural networks. In

Proceedings of ICML Conference. 7134–7143.
[38] C.J. Zhu, S. Storandt, K.-Y. Lam, S. Han, and J. Bi. 2019. Improved dynamic graph

learning through fault-tolerant sparsification. In Proceedings of ICML Conference.
7624–7633.

[39] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversar-

ial attacks on neural networks for graph data. In Proceedings of ACM SIGKDD
Conference. 2847–2856.

[40] Daniel Zügner and Stephan Günnemann. 2019. Certifiable robustness and ro-

bust training for graph convolutional networks. In Proceedings of ACM SIGKDD
Conference. 246–256.

5534

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Attacking Spectral Properties and Sparsifiers
	3 Attacking Graph Distances and Spanners
	4 Experimental Results
	References

