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Abstract

Graph neural networks and graph transformers explicitly or im-
plicitly rely on fundamental properties of the underlying graph,
such as spectral properties and shortest-path distances. However,
it is still not clear how these graph properties are vulnerable to
adversarial attacks and what impacts this has on the downstream
graph learning. Moreover, while graph sparsification has been used
to improve computational cost of learning over graphs, its suscep-
tibility to adversarial attacks has not been studied. In this paper,
we study adversarial attacks on graph properties and graph sparsi-
fication and their impacts on downstream graph learning, paving
the way for how to protect against these potential attacks. Our
proposed methods are effective in attacking spectral properties,
shortest distances, and graph sparsification as demonstrated in our
experimental evaluation.

CCS Concepts

« Theory of computation — Graph algorithms analysis; «
Security and privacy — Software and application security.
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1 Introduction

Graph machine learning, such as graph neural networks (GNNs)
[11, 16, 26] and graph transformers [21, 36], has received signifi-
cant attention, thanks to its robust performance in various graph
prediction tasks and abundant instances of graph-structured data
in real-life and scientific fields. These advanced graph models ex-
plicitly or implicitly rely on inherent properties of the underlying
graph, such as spectral properties and shortest-path distances. In
network and graph data, however, false data can be easily injected
by adversaries: spammers can create fake followers on online social
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networks, false “knowledge” triplets that are hard to verify can
be added to a knowledge graph, etc. It is crucial to obtain a good
understanding of the impact of these adversarial attacks on the
graph properties and downstream graph learning, before develop-
ing effective defense strategies.

In addition, it is still open to address the tradeoff between the
expressive power and the computational cost. Recently, graph spar-
sification [28], which can approximate a graph by a small subgraph,
has been used to improve the computational overhead of graph
learning [6, 12, 25, 38]. Graph learning models run faster in small
graphs while generating comparable performance [25, 33] if the
small graphs are a good approximation of the original graphs. How-
ever, it is still under-explored whether this newly added graph
sparsification module is secure and reliable and whether it is a
vulnerable point for adversarial attacks. For example, if the learned
graph representation is used for downstream graph clustering, a
dirty spectrally sparsified graph may not contain the key infor-
mation of the original graph for spectral clustering. Considering
routing algorithms for traffic management in wireless networks
and machine learning based network resource allocation and opti-
misation in wireless networks, if a GNN model needs to work on a
sparsified network, and an adversary attacks sparsification process,
it can alter the GNN prediction.

Our contributions in this exploration are summarized as follows:

e We study adversarial attacks on spectral properties in a graph
and spectral sparsification and their impacts on downstream
graph learning.

e We investigate adversarial attacks on graph shortest-path
distances and graph spanners through linear programming.
The proposed method can simultaneously elongate the short-
est paths between multiple pairs of vertices using optimal
perturbations while maintaining a small runtime.

e We have conducted extensive experiments to demonstrate
the effectiveness of our proposed methods in attacking graph
properties and sparsification: a small budget of perturbing
less than 5% of graph edges can significantly deteriorate
the quality of graph clustering results; the shortest path
interdiction method enlarges distances for multiple pairs
of vertices using optimal perturbations, often much smaller
than baselines, under comparable runtime.

Related Work. Adversarial attacks on machine learning have at-
tracted increasing research interest [2, 13, 29]. Small, often unno-
ticeable, perturbations on the samples designed by the attackers can
completely alter the output of the machine learning models. Like the
studies on grid data or other data, carefully crafted small perturba-
tions to graph structure and/or node features can also produce mod-
els with wrong prediction results [3, 7, 9, 10, 19, 20, 31, 32, 39, 40].
While these methods often directly target attacking a specific task,
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it is unclear how to attack fundamental properties of the underlying
graph, such as spectral properties and shortest distances, and what
impacts this has on downstream machine learning tasks.

Our problem of attacking shortest paths is also known as the
shortest path interdiction [15, 22]. Miller et al. [22] increase edge
weights such that a pre-chosen path connecting two vertices be-
comes their shortest path in the perturbed graph. This method can
be used to solve a simplified version of our problem when only a
single vertex pair is considered. However, their method requires
calculating the second shortest path using Yen'’s algorithm [35],
and thus incurs cubic computational cost. In contrast, our proposed
model works for multiple vertex pairs and even all pairs, using only
the shortest path algorithm.

2 Attacking Spectral Properties and Sparsifiers

Spectral Properties. Spectral graph theory studies inherently
combinatorial graphs from an algebraic perspective and spectral
properties have been exploited explicitly or implicitly in graph
machine learning, e.g., spectral clustering [23], Laplacian smoothing
[25], and semi-supervised learning [5]. Define the graph Laplacian
of a graph G as L = D — A where A is the adjacency matrix of G and
D is a diagonal matrix with the i* diagonal entry equal to the sum
over the i-th row of A. The eigenvalues A and eigenvectors u of the
Laplacian matrix are called Laplacian eigenvalues and eigenvectors.
Our goal is to study the impacts of adversarial attacks on spectral
graph properties and subsequent graph learning tasks based on
these properties.

We consider undirected unweighted graphs and use edge flipping
as the attacking method, specifically, adding new edges by flipping
0 to 1 in the adjacency matrix A and deleting existing edges by
flipping 1 to 0 to get the graph A’ after the attack. To measure the
changes in the Laplacian eigenvalues and eigenvectors, we adopt the
mean square error (MSE) between the eigenvalues and normalized
mutual information (NMI) of the eigenvectors, respectively. Then
the attacking problem under a budget of flipping at most F edges
can be re-formulated as:

max O(A,A") = f(LA)+a-g(uu’)
A/ eRan

ey

max
A’ cRnxn

1 n

- Z (A = 20)% + & - NMI(u;, ),
i=1

s.t||JA—A'||o < 2F, (AT = A",

where a controls the relative weight. Because of the undirected na-
ture of graphs, A’ is symmetric and the zero-norm of the difference
between A and A’ is not larger than 2F.

The search space in Eq. (1) is over all possible n-vertex attacked
graphs. However, we can generate a set of candidates for edge flips,
C = C4 U Cy, which includes candidates to add C,; and candidates
to delete C;. For adding edges, we randomly sample |C,| candidate
vertex pairs with no edge. For Cy, we include all existing edges in
the clean graph while avoiding generating any singleton vertices.

To avoid computing the eigenvalues from scratch and reduce
complexity, we employ the fast approximation method of Laplacian
eigenvalues in [3] as shown in Theorem 2.1. The approximation
of eigenvectors is more complicated and time-consuming and thus
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will be addressed in future study. Among the edge candidates C, we
greedily select the top F flips that maximize the objective in Eq. (1).

THEOREM 2.1 (THM. 4 1N [3]). Consider the normalized graph
Laplacian L = D~Y2LD~Y/2  The eigenvalue Ay of L' obtained after
a single edge flip (i, j) can be approximated by A; =Ay+(1-
2Ai,j)((”yi - uyj)Z - /ly(uzi + ui}))

The computational complexity is O(n®+|C|), where w € [2,2.373)

(2.373 being the matrix multiplication exponent). It first performs
eigendecomposition to obtain eigenvalues/vectors of the input
graph in O(n®) time [8]. For each candidate edge in C, it then
computes the approximate eigenvalues in O(1) time. Finally, top
F flips are selected as the perturbations. We emphasize that our
method is easily parallelizable because the evaluations of different
edge flips in C are completely independent. In contrast, one could
iteratively select the top edge flip and then estimate the objective
based on the remaining candidates and the new attacked graph. We
found that this method has similar objective values but is much
more computationally expensive.
Spectral Sparsifiers. Spectral sparsifiers are an important type of
graph sparsifiers that aims to approximately preserve the Laplacian
eigenvalues and eigenvectors [28]. A (1 + €)-spectral sparsifier H
requires that for all continuous vectors x, the quadratic form of its
Laplacian Ly, i.e., x| Lgx, approximates that of the original graph
within 1 + € factor. Lee and Sun [17] showed that H can be con-
structed with size O(n/€?) in nearly linear time, O(m/ePM)Y in the
number of edges m. Despite the wide use of spectral sparsification
in graph learning, it is still unclear whether this additional module
is vulnerable to adversarial attacks.

We can define adversarial attacks in different ways: when tar-
geting the spectrum preservation, we want to see the Laplacian
eigenvalues and eigenvectors of the sparsifier S for the attacked
graph to be significantly different from those of the sparsifier " for
the original graph, i.e., maximize O(S, S”). Since spectral sparsifica-
tion itself well approximates the Laplacian eigenvalues/vectors, we
can simplify the problem by removing the sparsification process
and turn to the same objective O(A, A”) in Eq. (1). In the experiment,
we evaluate both objectives and verify the success of our attack
method in both setups. In addition, we can target the number of
edges in the sparsifier and strive for that the size of the sparsifier for
the attacked graph is considerably larger than that of the sparsifier
% > ¢ for constant ¢ > 1), reducing the
gain due to the sparsification. Solving this would require a novel
breakthrough and is currently under investigation. Finally, attack-
ing the sparsification runtime for a large ratio of runtime with and
without the attack is also an interesting direction.

for the input graph (e.g.,

3 Attacking Graph Distances and Spanners

Graph shortest paths and distances capture the graph structural
information and have been used explicitly or implicitly for learning
over graphs such as in graph neural networks [34, 37], spectral
methods [6, 38], and a series of graph kernel methods based on
shortest paths and connectivity [4, 14, 27]. Here we study how
to maximally change/attack shortest distances given limited edge
weight perturbations. We choose the perturbations as increasing the
weight W (e) of an edge e by d(e), which subsumes edge deletions
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(with d(e) = o0), while ignoring decreasing edge weights as it could
make the problem not affordable. Towards unnoticeable attacks,
we define two types of budgets to constrain the changes: a local
budget b(e) indicates the maximum added weight for each edge
and a global budget B specifies the maximum total added weights
for all the edges.

A general attacking objective is that for each vertex pair u, v of
multiple targeted pairs P in a graph G, their shortest distance in the
attacked graph G’, dist(u, v, G’), is no smaller than h(dist(u,v, G))
with h(-) being the distortion function. The formulated linear pro-
gram would look like the following with requirement (a):

min Z d(e)

ecE
s.t.(a)Yu,v € P, dist(u,0,G") > h(dist(u,0,G))
(b) Vp(u,v) € Q, Z(W(e) +d(e)) = h(dist(u,v,G))
eep
(c)¥p(u,0) € Q, Z(W(e) +d(e)) > h(dist(u,0v,G))
eep
fore € E,d(e) € [0,b(e)]

Zd(e) <B

eckE

@

Here requirement (a) needs to be realized. A naive method is
to compute, for every pair u,v € P, paths Q,,, between u and v
with distance smaller than h(dist(u,v, G)) and then take union of
these paths to get Q. If all the paths in Q have a distance at least
h(dist(u,v,G)) as in constraint (b), then requirement (a) holds since
the distance of a path cannot decrease after adding edge weights
in the graph. This method clearly has a high computational cost to
compute the path set Q, which is at least as expensive as finding
top-K shortest paths, O(Kn®) [35]. To avoid the overhead due to Q,
we observe that a solution of the linear program with only a subset
Q of paths in Q is optimal, as long as requirement (a) is met.

OBSERVATION 3.1. Let S be the solution of solving the linear pro-
gram (2) with constraint (c) . If requirement (a) is satisfied, S is optimal.

This inspires our main algorithm in Alg. 1, where we only include
pair-wise shortest paths in Q and generate constraints gradually.

Algorithm 1 Attacking Pair-wise Shortest Distances

Input: G(V,E,W), h(-), targeted vertex pairs P, local budget b(e), and
global budget B
Output: Added weight d(e) for every edge e
1:d(-)=0,0=0
2: while true do
3: for every u,v € P do
Compute the shortest paths p between u and v in G’ under d(-)
if dist(p) > h(dist(u,0,G)) then
Continue;
Q=0u{p}
if Q was not changed then
Break;
10:  Solve the linear program (2) with constraint (c) to get new d(-)
11: return d(-);

4
5
6:
7:
8
9

Distance between Two Sets. It is well-motivated that in trans-
portation networks one is interested in elongating the shortest
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distance between two communities. The communities can be formu-
lated as source and target vertex sets S and T. The distance between
two sets of vertices U, V is defined as dist(U, V) = min{dist(u,v) |
u,v € U x V}. To attack this type of distances, we add a virtual
vertex s pointing to every vertex in S with weight 0 and a virtual ver-
tex t pointing from every vertex in T with weight 0, and then turn
to Alg. 1 with P = {(s,t)}. It is easy to see dist(s,t) = dist(S,T).
We need to carefully avoid adding weights to the virtual edges
{(s,u) |lu e S} U{(v,t)|v € T} though.
Graph Spanners. Graph spanners are a sparse graph structure
that approximates shortest distances in a graph [24, 30]. Unfortu-
nately, the robustness of graph spanners to adversarial perturba-
tions remains an intriguing open question. Attacking graph span-
ners can target the approximation of shortest distances by setting
Vu,0 € P, dist(u,v,spanner(G’)) = h(dist(u,0,G)) for a set P of
targeted pairs. However, using this constraint in a linear program
can be highly complex: for every tentative G’, we have to compute
its spanner to verify the distance inequality. A simple yet effec-
tive way is to remove spanner() and turn to linear program (2).
Since dist(u, v, Spanner(G’)) > dist(u,v,G’), requirement (a) is
still satisfied, with possibly sub-optimal attacks w.r.t. the original
constraint.
Attacking the Spanner Size. Assume a fixed spanner algorithm,
e.g., the greedy algorithm that iteratively picks the minimum edge
into the spanner when the edge’s end vertices have shortest path
distance in the spanner larger than the required value [1]. Since
the edge with the minimum weight will be chosen in each iteration,
an interesting question is whether we can add appropriate edge
weights so that significantly more edges are included in the spanner
of the attacked graph.

Experimental Results
In this section, we analyze selected results of our experiments.
Datasets. We use five real-world datasets from various domains
including Facebook, Cora, Citeseer, ca-HepTH, and LastFM. Collected
from Standford SNAP [18], these datasets cover collaboration net-
works, social networks, and citation networks. The number of nodes
ranges from 1K to 10K and the number of edges ranges from 3K to
88K.
Spectral Graph Properties. To evaluate the deviation of spectral
properties, we report the objective values in Eq. (1). We also run
spectral clustering on both attacked and clean graphs and calculate
the normalized mutual information (NMI) between their clustering
results to verify the impact on graph learning. A smaller NMI value
indicates more dissimilar clustering and is preferred. All perfor-
mance measures are averaged over five runs and reported together
with their standard deviation.

For comparison, we implement three heuristic/random baselines:
for a budget of F edge perturbations, Random randomly deletes
edges; Betweenness removes edges of top-F largest edge between-
ness centrality; and Pagerank computes the pagerank of each edge
as the mean pagerank of its two vertices and then removes edges
with top-F highest pagerank. We evaluate two types of candidates,
Cq U Cy4 (with |Cq4| = |Cy4l) and Cy4 only, and find that the latter
results in one order of magnitude larger objective, thus using Cy
as candidates and keeping consistent with the baselines. We vary
the perturbation rate across {1%, 2%, 3%, 4%, 8%, 12%, 16%, 20%}. As
shown in Fig. 1, our attack method almost always achieves the
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Figure 1: Performance Measures of Different Attack Methods on Spectral Clustering

poorest clustering quality in terms of the smallest NMI values for
different perturbation rates among all tested methods. In the Face-
book and Cora datasets in Fig. 1(a,b), the margins between our attack
(blue solid line) and the baselines are quite significant, although our
NMI values are not ideally close to zero. In the Citeseer, ca-HepTH,
and LastFM datasets, our attack under small perturbation rates can
already drop the NMI to almost zero, destroying the clustering
quality, as in Fig. 1(c,d,e). Betweenness often performs better than
Pagerank, since it can better characterize the importance of edges.

Fig. 1(f) shows the runtime to complete all the attacks of varied
rates from 1% to 20%. Our method has larger runtimes than Pagerank
and Random but much smaller runtimes than Betweenness, while
still formulating considerably more effective attacks. It should be
noted that our method’s runtime can be accelerated using multi-
core parallel computing, because the computations of different
candidate flips can be performed in parallel.

For attacking spectral sparsifiers, we also test the inclusion of
the sparsification process, that is maximizing O(S, S”) instead of
O(A, A’) in Eq. (1). The results remain similar as those of maximiz-
ing O(A, A”). We further vary the approximation parameter € of
spectral sparsifiers in {0.3,0.5,0.7, 0.9} in the Facebook and observe
that a larger value of € allows more errors in the approximation,
leading to slightly worse clustering quality.

Shortest Distances. For each graph data, we assign all edge weights
either equally as 1, or according to a uniform distribution between
1 and 2, or a Poisson distribution with A = 1 with 1 added to each
value. We then randomly select 50 sets of 20 pairs of vertices each
for the multiple-pairs case and 50 pairs with 20 vertices each for the
sets case. We ensure that the distance between each pair of vertices
is at least 5. For every combination of graph, selected vertices, and
attacking method, we run the same experiment 3 times and average
the relevant metrics. Experiments in which the algorithm reaches

Weights: Equal ~ Weights: Uniform  Weights: Poisson Weights: Equal  Weights: Uniform ~ Weights: Poisson
10K 1 ’ 10
120
T T B
| \
£
4K T . - %
a L 0 : -
%K = | :
2 = .
0 0
aLPuGreedyFirst= GreedyMin u LP = GreedyFirsts GreedyMin

(a) Perturbations (b) Run Time (s)

Figure 2: Performance of Attack Models on Multiple Pairs of Ver-
tices in the Facebook network.

200 iterations or 300 paths are automatically terminated. For all
experiments, h(x) = 5x + 0.1, and the global budget is 1000.

We adopt two greedy baselines from [22] for the comparison.
GreedyFirst considers the first edge in the path traversal order, and
assigns it whatever weight is needed to make the path satisfy its
corresponding constraint in the linear program. GreedyMin is simi-
lar but perturbs the edge with the smallest weight instead. For a
fair comparison with these baselines, we exclude local budget con-
straints from the linear program. The runtime of our algorithm does
not significantly differ when including local budget constraints.

Fig. 2 plots the performance of attack methods on multiple pairs
of vertices in the Facebook graph (other results in the full paper),
where each box plot shows the distributions of summed edge per-
turbations (a) or run time (b) for different methods. Across several
different graphs, these experiments demonstrate that our method
LP significantly outperforms greedy baselines. For example, in Face-
book, it finds solutions between 7.87 and 10.39 times less costly than
the runner-up, depending on how edge weights were assigned.
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